Problems with Evaluation of Unsupervised Empirical Grammatical Inference Systems

نویسندگان

  • Menno van Zaanen
  • Jeroen Geertzen
چکیده

Empirical grammatical inference systems are practical systems that learn structure from sequences, in contrast to theoretical grammatical inference systems, which prove learnability of certain classes of grammars. All current empirical grammatical inference evaluation methods are problematic, i.e. dependency on language experts, appropriateness and quality of an underlying grammar of the data, and influence of the parameters of the evaluation metrics. Here, we propose a modification of an evaluation method to reduce the ambiguity of results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of selection in context-free grammar learning systems

Grammatical inference deals with learning of grammars describing languages. Formal grammatical inference aims at identifying families of languages that have a shared property, which can be used to prove efficient learnability of the families formally. In contrast, in empirical grammatical inference research, practical systems are developed that are applied to languages. The effectiveness of the...

متن کامل

Comparison Between Unsupervised and Supervise Fuzzy Clustering Method in Interactive Mode to Obtain the Best Result for Extract Subtle Patterns from Seismic Facies Maps

Pattern recognition on seismic data is a useful technique for generating seismic facies maps that capture changes in the geological depositional setting. Seismic facies analysis can be performed using the supervised and unsupervised pattern recognition methods. Each of these methods has its own advantages and disadvantages. In this paper, we compared and evaluated the capability of two unsuperv...

متن کامل

Using Grammar Induction to Discover the Structure of Recurrent TV Programs

Video structuring, in particular applied to TV programs which have strong editing structures, mostly relies on supervised approaches either to retrieve a known structure for which a model has been obtained or to detect key elements from which a known structure is inferred. In this paper, we propose an unsupervised approach to recurrent TV program structuring, exploiting the repetitiveness of ke...

متن کامل

A Multilingual Parallel Parsed Corpus as Gold Standard for Grammatical Inference Evaluation

In this article we investigate how (computational) grammar inference systems are evaluated and how the evaluation procedure can be improved. First, we describe the currently used evaluation methods and look at the advantages and disadvantages of each method. The main problems of the methods are: the dependency on language experts, the influence of the annotation scheme of language data, and the...

متن کامل

Presentation of an efficient automatic short answer grading model based on combination of pseudo relevance feedback and semantic relatedness measures

Automatic short answer grading (ASAG) is the automated process of assessing answers based on natural language using computation methods and machine learning algorithms. Development of large-scale smart education systems on one hand and the importance of assessment as a key factor in the learning process and its confronted challenges, on the other hand, have significantly increased the need for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008